网上有关“小学数学思想方法”话题很是火热,小编也是针对小学数学思想方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
小学数学思想方法有哪些
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳。之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但它们是个案,不具有一般性。作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。
借助归纳推理可以培养学生“预测结果”和“探究成因”的能力,是演绎推理不可比拟的。从方法论的角度考虑,“双基教育”缺少归纳能力的培养,对学生未来走向社会不利,对培养创新性人才不利。
一、什么是小学数学思想方法
所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
二、小学数学思想方法有哪些?
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
15、变中抓不变的思想方法:
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法:
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
小学阶段主要渗透哪些数学思想方法
圆的面积二教学反思篇1
我上了一节《圆的周长和面积》的复习课,下面是我从几方面对自己的教学过程进行的深刻反思:
一、在生活中发现数学问题。
数学产生于生活实践,又随着生活实践和科学技术的发展而发展。在《新课标》中也提出要求学生学习生活中的数学。在教学中应引导学生去发现生活中的问题。因此我在讲授《圆周长和面积》复习课时,从学生的实际生活入手,出示了圆形花坛的,设计了在花坛周围铺一条小路求小路的面积这样的问题,创设了与学生十分贴近的生活情景,这样充分调动了学生学习兴趣。增强了学生学好数学的信心。
二、小组合作,归纳数学规律。
知识的形成单靠教师的讲授是不够的,还必须引导学生自主探索,这样便于他们抓住知识点规律,系统的归纳出规律。在总结圆的周长和面积的联系与区别时,我做了适当的引导,让学生小组合作从三个方面总结。
三、开发实际生活中的数学问题。
教师应注意从实际生活和生产中挖掘数学问题,让学生在实践中激发学习数学的兴趣,在解决问题中唤起学习数学的热情。让学生充分感受到数学问题在我们生活中无处不在。四、 加强基础练习 本节课的讲授,我感觉学生对习题的理解分析能力都有所提高,但最基础的计算成了问题,存在着计算速度慢和准确率不高的问题,使我感到自己应该在计算方面加大力度。通过本课的教学我感到要想提高课堂教学质量,自己应该做生活的有心人,积极寻找生活素材,把它融入到课堂教学中,让学生感受到数学就在我们的生活中。
圆的面积二教学反思篇2
圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。经过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
一、以旧引新,渗透“转化”思想
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,经过比较复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也能够拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形能够让学生自我下课后推导。
再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的构成
经过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。
圆的面积二教学反思篇3
课堂教学中培养学生创新技能必须依靠潜移默化的熏陶方法,让学生在不断经历的学习过程中,感悟到创新思维的技巧。下头是我对本课教学的反思:
一.以旧促新
情景导入,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
二.转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。研究学生的实际情景,电脑先演示2、4、8等份圆,分别拼成一个近似的平行四边形,让学生观察它越来越像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,最终它就会变成长方形。完成另一个重要数学思想—极限思想的渗透。
三.公式推导
长方形的面积学生都会计算:s=ab引导学生观察长方形的长和宽与圆有什么样的关系:发现长=πr,宽=r,长方形的面积=圆的面积,从而推导出s=ab=πr2
四、重视合作
重视小组学习,促进合作交流。实践证明,小组讨论有利于全体学生主动性的发挥,有利于师生之间、学生之间的信息交流,有利于不一样思维的碰撞。对圆的推导过程的创新比较适合运用合作探究的学习方式。在这节课的教学中,教师从学生手中的材料出发,让学生摆一摆,结合自我的创新说一说,经过小组合作进行探究活动,既鼓励学生独立尝试,又重视学生间的合作互助,给学生供给了多向交往的机会,提高了学生合作学习的意识。学生在学习中互相交流,提高了观察、分析及解决问题的本事。
五、培养创新
变传统的知识传授过程为“解决问题”序列的探究过程。教学过程中,创设一些对学生来说需要开辟新路才能解决的问题情境,对于提高学生的创新技能是十分有益的。六、练习设计
对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题公式公式。
七、存在问题
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。
圆的面积二教学反思篇4
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的 教学设计 ,我异常注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
一、以旧引新,渗透“转化”思想
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、动手剪拼,体验“化曲为直”
学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越
接近图形平行四边形或长方形。再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
四、演示操作,感受知识的构成
经过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的构成。
五、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。
圆的面积二 教学反思 篇5
圆的面积是小学六年级数学下学期教学的重点内容。我教小学毕业班已经十余年了,自然这节课我讲的也不下十余次了,以前在偃师市讲过,也在洛阳市也讲过。虽然每次都反映不错,可我总觉得不太满意,总觉得这节课的容量少了点,今年我决定改变以往的教学方法,增加课堂容量。
以前我是这样安排课堂结构的:谈话引入圆面积后,让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,然后教师动画演示,从而得出采用转化图形的方法,把新的图形转化成以前学过的图形来研究,使学生从中受到启发,进而想到把圆形也转化成以前学过的图形来研究。然后通过学生的动手操作、自主探究、合作交流,最后自己推导出圆面积计算公式。让学生在课堂上把8等份圆、16等份圆,先剪一剪、再拼一拼,在学生动手操作后,教师再动画演示32等份圆、64等分圆、128等份圆所拼成的图形更接近长方形。最后想一想:所拼近似长方形的长和宽与圆的什么有关系(近似长方形的长相当于圆周长的一半,宽相当于圆的半径),由长方形面积公式继而推导出圆面积公式。圆面积公式推导出来后,时间已所剩不多,学生运用公式解决问题的时间很少。环形的面积计算需要下一个课时进行。
今年我经过思考,决定这样做:让学生提前预习,小组内3、4号同学做8等份圆,1、2号同学做16等份圆,两人所做圆形的大小一样,所涂的颜色也一样,其中一个用剪刀剪好,一个不剪,以备上课时使用。
今年的课堂结构调整为:一开始由本节主题图引入,已知每平方米草皮8元钱,一个圆形草坪需要多少元钱?要解决这个问题就要求出圆的面积,由此引入新课。紧接着出示本节课的学习目标。接下来依然让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,渗透转化思想,使学生自然想到把圆形也转化成以前学过的图形来研究。然后让学生拿出自己制作的学具,先俩俩合作(1、2号合作,3、4号合作),再四人小组合作,在课桌上拼图。通过几次拼图发现,所拼近似长方形的长近似于圆周长的一半,宽近似于圆的半径。各小组展示后我用演示4等份圆,8等份圆、16等份圆、32等份圆、64等份圆……所拼成的图形,学生迅速发现,把圆等分的份数与多,拼成的图形越接近长方形,自己很快就推导出圆面积计算公式。这样就节约了大量的时间来进行公式实际运用的练习了。本节课学生不但会计算圆的面积,还会计算环形的面积……这样环环相扣,学以致用,学生学习积极性极高,既熟练的掌握了公式,又有了自主解决问题的成就感,圆满完成本节的学习目标。
不过这节课,也暴露出了一些问题:例如学生在计算平方的时候,出错较多,6的平方,应该是36,很多学生错误的把它算成12,这说明我对学情分析还不透彻,再例如学生的书写格式也不够规范等,所有这些还有待今后进一步提高。
高等数学学习指导的5图书信息
小学阶段主要渗透哪些数学思想方法
化归思想
数形结合思想
变换思想
组合思想
方程思想等。
如何渗透主要的数学思想方法一、课堂引入,归纳渗透
师:同学们,现在我们来观察一组。同学们在观察的过程中要说明这些图形有怎样的特点。(在萤幕上给出镜子两侧的图画,有五角星、花朵、雪花等。)
生1:这些在镜子两侧的图形是一样的,就像是呈现出的倒影一样。
生2:这些影象可以重叠起来。
师:同学们说得都很不错,这些图形是不是以像镜子一样的一条线进行对称的?
生:是。
师:我们就把这种在平面内,沿着一条直线对折以后重叠的图形叫做轴对称图形。那么接下来同学们就开始看老师在黑板上呈现的这几幅,看看哪些是轴对称图形?
然后,教师就给学生呈现几幅轴对称图形的,教会学生运用归纳和演绎的数学思维方法,这样就能够使数学学习的过程变得轻松起来。
二、内容拓展,联想分析
师:刚才已经对轴对称的基本知识进行了了解,现在同学们来思考一下我们学过哪些图形,而这些图形又有哪些是轴对称图形呢?
生1:我们之前学过长方形和正方形。这两个图形都是轴对称图形,长方形的对称轴有两个,而正方形的对称轴有四个。
师:说得不错。同学们来思考一下“圆”这个图形是不是轴对称图形呢?圆形的对称轴有几条呢?
生1:圆形是轴对称图形,但是圆形的对称轴好像有无数条。
小学阶段的计算教学,应该渗透哪些重要的数学思想方法小学数学教学中渗透数学思想方法的必要性 所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法, 是指某一数学活动过程的途径、程式、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法 的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例 题的解法,也只能看到巧妙的处理,而看不到由特殊例项的观察、试验、分析、归纳、抽象概括或探索推理的 心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识 的教学。如果教师在教学中,仅仅依照课本的安排,沿袭著从概念、公式到例题、练习这一传统的教学过程, 即使教师讲深讲透,并要求学生记住结论,掌握解题的型别和方法,这样培养出来的学生也只能是“知识型” 、“记忆型”的,将完全背离数学教育的目标。 在认知心理学里,思想方法属于元认知范畴,它对认知活动起著监控、调节作用,对培养能力起著决定性 的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法 就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是 培养学生分析问题和解决问题能力的重要途径。 数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作 用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国 际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和 国际数学教育发展的必然结果。 小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强 学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个座标系,那么数学知识、技能就好 比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横 两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基 本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
浅谈如何渗透数学思想方法摘要:所谓数学思想,就是对数学知识和方法的本质认识,它是数学思维的结晶和概括,它直接支配着数学的实践活动,是解决数学问题的灵魂.所谓数学方法,就是数学思想的表现形式,是实现数学思想的手段和工具,是解决数学问题的根本策略和程式.方法与思想之间没有严格界限,但由于任何数学问题的解决,无不以某些数学思想作为指导.于是,数学思想带有理论特征,而数学方法却具有实践性的倾向.因此,人们习惯于把具体的、操作性较强的办法称为方法,而把那些抽象的、涉及范围较广的或框架性的办法称为思想.形象地说,一个方法像一把钥匙,一把钥匙只能开一把锁.而数学思想就相当于制造钥匙的原理,解决任何问题无不是在某种思想指导下进行的.运用数学方法解决问题的过程,就是感性认识不断积累的过程.当这种积累达到一定程度时就会产生飞跃,从而上升为数学思想.一旦数学思想形成以后,数学思想便对数学方法起著指导作用,因此,人们通常将数学思想与方法看成一个整体概念--数学思想方法.……
图形的认识渗透哪些数学思想方法人教版一年级上册数学《6和7的认识》教案(一)教学内容:《6和7的认识》教学目的:1、认识6、7,能正确地书写6、72、能用6、7表示生活中的各种物体。3、培养学生的数感和认真观察能力教学重点:1、区别6、7的基数意义和序数意义2、写数字,培养学生的数感教学过程:一、创设情境在电脑上出示42页认识6和7的主题图,并让学生仔细观察。1、图上有些什么?2、请同学们数一数,图上有多少人、多少桌子、椅子。学生报得数。3、你是怎样数教室里的人数的?还可以怎样数?4、你们是怎样数出椅子的数量的?(先数已经放好的6把椅子,再数又搬来的1把。)5、我们刚才都是按照1、2、3、4、5、6、7的顺序数数的。在数数中我们发现,数5个以后再数1个就是6个,接着6再数1个就是7,7比6多1,6比5多1。二、新授1、认识6和7你们都观察的很仔细,今天我们就来认识一下新朋友6和7,板书课题:6和7的认识2、你能拿出表示6的学具吗?你能用它们摆成你喜欢的图形吗?(生拿学具,师出示点子图或其他磁性教具,生动手摆,师选有创意的表扬,展示)你知道6是怎么来的吗?5的后面又该是数字几呢?师出示计数器,演示,5拨上1是6。6的后面再加1个,又是多少?计数器演示。你能拿出表示4的学具吗?并摆出你喜欢的图形。3、比较大小,前面我们认识了5,今天又认识了6和7,那你知道谁大谁小吗?5和6比谁多谁少?6和7比呢?你还能看出谁比谁少?6比7小反过来可以怎么说?4、基序数意义(1)你能从小到大数到7吗?从7开始从大到小数到1呢?(2)观察43页金鱼图,找准起点,数一数这里有几瓶金鱼?(分组活动)(3)先找一找那一瓶装了6条金鱼?从左边数起看一看是第几瓶?(4)从左边数起找到第7瓶,再数一数瓶里有多少条金鱼?5、教学6、7的写法观察字形特点,6像什么?6是一笔写完的,从田字格的上半格起笔一直写到下面再画个圆后完成,7像什么?
如何有效渗透数学思想方法
我国数学教育名家马明说过:“数学教学的本质是思维过程。”培养学生的思维能力是数学的教学目的之一,在数学教学中,思维能力的培养有赖于对数学问题的解决,因此,教师可以在数学解题教学中培养学生的思维品质。数学问题的解决,无不以数学思想为指导,以数学方法为手段。而数学方法孕育着数学思想,数学思想中又蕴含着数学思维。数学思想方法是数学知识的精髓,是数学内容的灵魂,是数学活动的指导思想和普遍适用的方法,它能使学生领悟数学的真谛,学会数学的思考和处理问题,是学习知识、发展智力和培养能力相结合的法宝,教师要让数学思想方法成为由知识转化为能力的纽带,促使学生良好思维品质的形成和发展。
小学数学教学中应渗透哪些数学思想方法以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳20米,黄鼠狼每次可向前跳6米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔15米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离20(或6)米的整倍数,又是陷阱间隔15米的整倍数,也就是20和15“ 最小公倍数”。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2.数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系使问题简明直观。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。
3.组合思想
组合思想是把所研究的物件进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。
4.“函式”思想
函式是近代数学的重要概念之一,在现代科学技术中广泛应用,在小学数学教材中,函式思想的渗透非常广泛。在第一学段,通过填图等形式,将函式思想渗透其中;在第二学段,学生掌握了许多计算公式,如s=vt等,这些计算公式实际上就是一些简单的函式关系式;到了六年级,正、反比例的意义是渗透函式思想的重要内容,因为成正比例和反比例的量反映的是两个变数之间的依存关系。
此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
此外还有集合思想、符号化思想、对应思想等数学思想和方法。
如何渗透数学思想方法ppt课件数学教学有两条线,一条是明线即数学知识的教学,一条是暗线即数学思想方法的教学。而数学思想方法是数学的精髓,是学生形成良好认知结构的纽带,是知识转化为能力的桥梁,是培养学生良好的数学观念和创新思维的载体,在教学中我们必须重视数学思想方法的渗透教学。
一、数学思想方法的界定
数学思想是对数学知识、方法、规律的一种本质认识;数学方法是解决数学问题的策略和程式,是数学思想的具体反映;数学知识是数学思想方法的载体,数学思想较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法,在运用数学基础知识及方法处理数学问题时,具有指导性的地位。对于学习者来说,运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一定程度就会产生飞跃,从而上升为数学思想,一旦数学思想形成之后,便对数学方法起著指导作用。因此,人们通常将数学思想与方法看成一个整体概念——数学思想方法。
二、初中阶段应渗透的主要数学思想方法
在初中数学教学中至少应该向学生渗透如下几种主要的数学思想方法:
1.分类讨论的思想方法
分类是通过比较数学物件本质属性的相同点和差异点,然后根据某一种属性将数学物件区分为不同种类的思想方法。分类讨论既是一个重要的数学思想,又是一个重要的数学方法,能克服思维的片面性,防止漏解。
2.类比的思想方法
类比是根据两个或两类的物件间有部分属性相同,而推出它们某种属性也相同的推理形式,被称为最有创造性的一种思想方法。
3.数形结合的思想方法
数形结合的思想方法是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
4.化归的思想方法
所谓“化归”就是将要解决的问题转化归结为另一个较易问题或已经解决的问题。
5.方程与函式的思想方法
运用方程的思想方法,就是根据问题中已知量与教学法未知量之间的数量关系,运用数学的符号语言使问题转化为解方程(组)问题。
用运动、变化的观点,分析研究具体问题中的数量关系,通过函式形式把这种数量关系进行刻划并加以研究,从而使问题获得解决,称为函式思想方法。
6.整体的思想方法
整体的思想方法就是考虑数学问题时不是着眼于它的区域性特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从巨集观上、整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联络著的量作为整体来处理的思想方法。
三、数学思想方法渗透教学的途径
1.在知识的发生过程中,适时渗透数学思想方法
数学教学内容从总体上可分为两个层次:一个称为表层知识,包含概念、性质、法则、公式、公理、定理等基本内容;另一个称为深层知识,主要指数学思想和方法。表层知识是深层知识的基础,具有较强的操作性,学生只有通过对教材的学习,在掌握与理解了一定的表层知识后,才能进一步学习和领悟相关的深层知识。而数学思想方法又是以数学知识为载体,蕴涵于表层知识之中,是数学的精髓,它支撑和统率著表层知识。因而教师在讲授概念、性质、公式的过程中应不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层知识,从而使学生思维产生质的飞跃。只讲概念、定理、公式而不注重渗透数学思想、方法的教学,将不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法。
如何在小学数学中渗透数学思想方法1.提高渗透的自觉性 数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学 知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常 常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先 要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数 学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。 2.把握渗透的可行性 数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。 同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学 知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。 3.注重渗透的反复性 数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从 而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透 不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练, 才能使学生真正地有所领悟。
小学数学教学中应该渗透哪些主要的数学思想方法初级数论及运演算法则、图形、日常数学应用、
初级代数概念、几何概念、集合与对应概念..
书名:高等数学学习指导(第2版)
ISBN:9787302235415
作者:北京联合大学数学教研室
定价:32元
出版日期:2010-8-1
出版社:清华大学出版社 本书在总结第1版教学使用过程中的经验的基础上,围绕最新教学大纲中的教学基本要求,按章节以知识点为单位进行编排.全书共13章.第1~12章内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分应用、常微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数.每章节包括知识要点、典型例题、自测题及答案等内容.部分章节后有数学家简介、数学史话和数学应用范例.第13章介绍用 Mathematica 研究高等数学问题.本书内容编排兼顾现行教材次序,同时考虑趣味性及应用性.
本书可作为普通高等院校一般工科类及经济管理类的本科生及专升本学生的高等数学课程习题课用书或学生自学的参考书,同时也可供高等院校相关课程教师参考. 第1章函数与极限
1.1函数
1.1.1知识要点
1.1.2典型例题
1.2极限概念极限运算
1.2.1知识要点
1.2.2典型例题
1.3无穷小的比较函数的连续性
1.3.1知识要点
1.3.2典型例题
自测题1
数学史话
1. 极限思想——重要性及其发展阶段
2. 刘徽与“割圆术”
第2章导数与微分
2.1导数的概念与运算
2.1.1知识要点
2.1.2典型例题
2.2高阶导数与微分
2.2.1知识要点
2.2.2典型例题
自测题2
数学应用范例
1. 相关变化率问题
2. 微分在近似计算中的应用
3. 导数在经济学上的应用
第3章微分中值定理与导数的应用
3.1微分中值定理洛必达法则
3.1.1知识要点
3.1.2典型例题
3.2导数的应用
3.2.1知识要点
3.2.2典型例题
自测题3
数学家简介
1. 罗尔
2. 拉格朗日
3. 柯西
4. 泰勒
5. 洛必达
目录
目录
第4章不定积分
4.1不定积分的概念与性质
4.1.1知识要点
4.1.2典型例题
4.2不定积分的换元积分法与分部积分法
4.2.1知识要点
4.2.2典型例题
自测题4
第5章定积分
5.1定积分的概念、性质和微积分基本公式
5.1.1知识要点
5.1.2典型例题
5.2定积分的换元法、分部积分法和反常积分
5.2.1知识要点
5.2.2典型例题
自测题5
数学应用范例
1. 已知变化率求变化量
2. 在经济学中的应用
3. 润滑油的存储量(反常积分的应用实例)
数学家简介
1. 牛顿
2. 莱布尼茨
数学史话牛顿和莱布尼茨创立了微积分
第6章定积分应用
6.1知识要点
6.2典型例题
自测题6
数学应用范例连续变量作用和问题
数学史话穷竭法求面积
第7章常微分方程
7.1一阶微分方程
7.1.1知识要点
7.1.2典型例题
7.2高阶微分方程二阶线性微分方程
7.2.1知识要点
7.2.2典型例题
自测题7
数学应用范例微分方程模型初步
数学史话钟摆、悬链线和伯努利兄弟
第8章向量代数与空间解析几何
8.1向量代数
8.1.1知识要点
8.1.2典型例题
8.2曲线与曲面
8.2.1知识要点
8.2.2典型例题
8.3平面与直线
8.3.1知识要点
8.3.2典型例题
自测题8
数学家简介笛卡儿
第9章多元函数微分法及其应用
9.1多元函数微分法的概念及偏导数、全微分
9.1.1知识要点
9.1.2典型例题
9.2多元复合函数及隐函数的微分
9.2.1知识要点
9.2.2典型例题
9.3多元函数微分学的几何应用、方向导数与梯度、
多元函数的极值
9.3.1知识要点
9.3.2典型例题
自测题9
数学应用范例如何测定太湖的最深处
第10章重积分
10.1二重积分
10.1.1知识要点
10.1.2典型例题
10.2三重积分
10.2.1知识要点
10.2.2典型例题
10.3重积分的应用
10.3.1知识要点
10.3.2典型例题
自测题10
第11章曲线积分与曲面积分
11.1曲线积分
11.1.1知识要点
11.1.2典型例题
11.2格林公式平面上曲线积分与路径无关的条件
11.2.1知识要点
11.2.2典型例题
11.3曲面积分
11.3.1知识要点
11.3.2典型例题
自测题11
数学应用范例
1. 小岛在涨潮与落潮之间的面积变化
2. 通信卫星的覆盖面积
数学家简介高斯
第12章无穷级数
12.1常数项级数
12.1.1知识要点
12.1.2典型例题
12.2幂级数
12.2.1知识要点
12.2.2典型例题
12.3函数展开成幂级数
12.3.1知识要点
12.3.2典型例题
自测题12
数学应用范例
1. 阿基里斯问题
2. 利用级数估计π的值
3. 微分方程的级数解
4. 表示特殊函数
第13章用Mathematica研究高等数学问题
13.1入门
13.1.1启动和退出
13.1.2Mathematica 7.0的工作界面
13.1.3Mathematica 7.0的输入、输出和运行
13.1.4数值类型和系统中的数学常数
13.1.5内建函数(built?in function)
13.1.6变量
13.1.7表达式
13.1.87.0以前版本中调用软件包
13.1.9Mathematica的联机帮助系统
13.1.10给初学者的提示
13.2函数二维图形极限
13.2.1自定义函数
13.2.2二维图形
13.2.3极限
13.3一元函数微分学
13.3.1求导数
13.3.2求函数的极小值
13.4一元函数积分学
13.4.1积分的计算
13.4.2反常积分的计算
13.4.3数值积分
13.5三维图形
13.5.1三维作图命令
13.5.2三维作图范例
13.6多元函数微积分运算
13.6.1求偏导数
13.6.2求全微分
13.6.3重积分
13.7无穷级数
13.7.1求无穷和
13.7.2把函数展开为幂级数
13.7.3去掉余项
13.8常微分方程
13.8.1求解微分方程通解
13.8.2求解微分方程初值问题
13.8.3求解微分方程组
自测题答案与提示
关于“小学数学思想方法”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[莱文斌]投稿,不代表恒泽号立场,如若转载,请注明出处:https://wap.cdhzwy.cn/zlan/202510-527.html
评论列表(3条)
我是恒泽号的签约作者“莱文斌”
本文概览:网上有关“小学数学思想方法”话题很是火热,小编也是针对小学数学思想方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。小学数学思想方法有...
文章不错《小学数学思想方法》内容很有帮助